Effect of 6-thioguanine on the stability of duplex DNA

نویسندگان

  • Jen Bohon
  • Carlos R. de los Santos
چکیده

The incorporation of 6-thioguanine (S6G) into DNA is a prerequisite for its cytotoxic action, but duplex structure is not significantly perturbed by the presence of the lesion [J. Bohon and C. R. de los Santos (2003) Nucleic Acids Res., 31, 1331-1338]. It is therefore possible that the mechanism of cytotoxicity relies on a loss of stability rather than a pathway involving direct structural recognition. The research described here focuses on the changes in thermodynamic properties of duplex DNA owing to the introduction of S6G as well as the kinetic properties of base pairs involving S6G. Replacement of a guanine in a G*C pair by S6G results in approximately 1 kcal/mol less favorable Gibbs free energy of duplex formation at 37 degrees C. S6G*T and G*T mismatch-containing duplexes have almost identical Gibbs free energy at 37 degrees C, with values approximately 3 kcal/mol less favorable than that of the control. Base pair stability is affected by S6G. The lifetime of the normal G*C base pair is approximately 125 ms, whereas that of the G*T mismatch is below the detection limit. The lifetimes of S6G*C and S6G*T pairs are approximately 7 and 2 ms, respectively, demonstrating that, although S6G significantly decreases the stability of the pairing with cytosine, it slightly increases that of a mismatch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 6-Thioguanine and Methyl-6-Thioguanine on stability of DNA duplexes

6-Thioguanine (isG) has been used for the past thirty years as an anti-cancer agent in maintenance chemotherapy for childhood acute lymphoblastic leukemia as well as acute myeloid leukemia. Despite its long-standing clinical use, little is understood of the molecular basis of the cytotoxicity associated with 6SG. Research has shown that 6SG is incorporated into DNA during replication after whic...

متن کامل

The Effect of 6-Thioguanine on Proliferation, Viability and Expression of the Genes DNMT 3A, DNMT 3B and HDAC3 in Lymphoid Cancer Cell Line Nalm6

Background: 6-thioguanine (6-TG) is one of the thiopurine drugs with successful use in oncology, especially for acute lymphoblastic leukemia (ALL). 6-TG is proposed to act as an epigenetic drug affecting DNA methylation. The aim of this study was to clarify the effect of 6-TG on the proliferation, viability and expression of genes coding for the enzymes DNA methyltransferase 3A and DNA methyltr...

متن کامل

6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation.

The ability to chemically synthesize biomolecules has opened up the opportunity to observe changes in structure and activity that occur upon single atom substitution. In favorable cases this can provide information about the roles of individual atoms. The substitution of 6-thioguanine (6SG) for guanine is a potentially very useful single atom substitution as 6SG has optical, photocrosslinking, ...

متن کامل

Au Nanoparticle Loaded with 6-Thioguanine Anticancer Drug as a New Strategy for Drug Delivery

In this study we suggested a new strategy for drug delivery of 6-thioguanine (6-TG) as a cancer drug by loading of this thiolic drug at a surface of Au nanoparticles. For this goal, we synthesized Au nanoparticle (Au/NPs) by reduction of tetrachloroauric (III) acid solutions by sodium borohydride and characterized Au/NPs by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Ultravi...

متن کامل

The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell dea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005